电机与电气控制技术教案 项目六 典型生产机械电气控制分析

	知识目标:		
教学目标	1. 熟悉 C650 车床电气控制电路;		
	2. 熟悉 XA6132 型卧式万能铣床电气控制电路;		
	3. 熟悉 T68 型卧式镗床电气控制电路;		
	4. 熟悉起重机械电气控制电路;		
	能力目标:		
	1. 能够识读、分析、总结电气控制系统各部分的工作原理;		
	2. 能够进行故障的检查与排除;		
	素质目标:		
	1. 使学生具有辩证思维的能力,实事求是、严肃认真的科学态度与工作作风;		
	2. 具有较强的与人交流和沟通能力;		
	3. 具备健康的人生观与价值观;		
	4. 具有较强的组织和团队协作能力。		
教学			
重点	各生产机械电气控制原理的分析		
教学			
难点	各生产机械电气故障的检查与排除		
教学			
科字 手段	启发式讲授、讨论发言、多媒体、板书、实操		
于权			
教学			
学时	8		
教学内容与教学过程设计 注释			
	我 子 Pi 台 寸 我 子 凡 性 风 N	/ 工	作

项目六 典型生产机械电气控制分析

〖知识准备〗

车床基本知识

车床被广泛用来车削外圆、内圆、端面、螺纹和定型表面,也可用钻头、铰刀等进行钻 孔和铰孔。一般分为卧式车床和立式车床,常用的多为卧式车床。

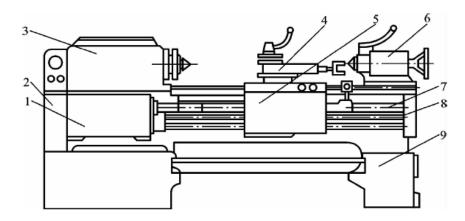
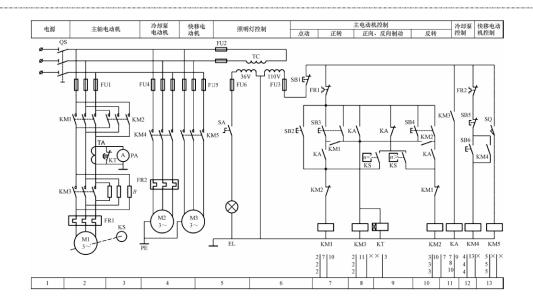


图 6-1 普通车床原结构示意图

1—进给箱;2—挂轮箱;3—主轴变速箱;4—溜板与刀架; 5—溜板箱;6—尾架;7—丝杠;8—光杠;9—床身


C650 车床电力拖动的控制要求及特点

- (1) 主轴负载主要为切削性恒功率负载,要求正反转、反接制动和调速控制,系统采用齿轮变速箱的机械调速方式,要求电气控制系统实现正反转和反接制动控制。
- (2)由于 C650 车床床身较长,为减少辅助工作时间,提高加工效率,设置了一台 2.2KW 的笼型三相交流异步电动机拖动刀架及溜板箱的快速移动,由于快速移动为短时工作制,要求采用点动控制。
- (3) 为了在机加工过程中对刀具进行冷却,车床的冷却液循环系统采用一台 125W 的三相 交流异步电动机驱动冷却泵运转,冷却泵电动机要求采用起停控制。
- 分析图 6-2 所示 C650 卧式车床电气控制原理图 任务分析

按照查线读图法,对图 5-1 逐一进行分析。

了解生产工艺与执行电器的关系

- (1) 主轴负载主要为切削性恒功率负载,要求正反转、反接制动和调速控制
- (2) 设置拖动刀架及溜板箱的快速移动,短时工作制,要求采用点动控制。
- (3) 机加工过程中对刀具进行冷却,冷却泵电动机要求采用起停控制。 分析主电路 分析控制电路

正、反转控制

按动正向起动按钮 SB3 时,两个动合触点同时闭合,SB3 右侧动合触点使接触器 KM3 通电、时间继电器 KT 线圈通电延时,中间继电器 KA 线圈通电自锁,SB3 左侧动合触点使接触器 KM1 线圈通电并通过 KA 的两个动合触点自锁,主电路的主轴电动机 M1 起动(全压)。时间继电器 KT 延时时间到,起动过程结束,主轴电动机 M1 进入正转工作状态,主电路 KT 动断延时断开触点断开,电流表 PA 投入工作,动态指示电动机运行工作的线电流。

正向点动控制

按下点动按钮 SB2(手不松开)时,接触器 KM1 线圈通电(无自锁回路),主电路电源经 KM1 的主触点和电阻 R 送入主轴电动机 M1,主轴电动机 M1 正向点动。

反接制动

按动停止按钮 SB1, 依赖自锁环节通电的 KM1、KM3、KT、KA 线圈均断电,自锁电路打开, 触点复位, 松开停止按钮 SB1 后, 控制电流经 SB1、KA、KM1 的动断触点和 KS(n>0)的动合触点使接触器 KM2 线圈通电,主轴电动机 M1 定子串电阻 R 接入反相序电源进行反接制动,当电动机转速接近于零时, KS(n>0)的动合触点断开, KM2 线圈断电,电动机 M1 主电路断电,反接制动过程结束。

车床照明电路采用 36V 安全供电,开关 SA 为照明灯 EL 的控制开关,熔断器 FU6 作照明电路的短路保护。

冷却泵电动机 M2 的控制

冷却泵电动机 M2 为连续运行工作方式,控制按钮 SB5、SB6 和接触器 KM4 构成电动机 M3 的起停控制电路, 热继电器 FR2 起过载保护作用。熔断器 FU4 用做主电路的短路保护。

刀架快速移动电动机 M3 的控制

转动刀架手柄,压下位置开关 SQ,接触器 KM5 线圈通电,电动机 M3 起动,经传动机构驱动溜板箱带动刀架快速移动。刀架手柄复位时,SQ 复位,KM5 线圈断电,快移电动机 M3 停转,快移结束。熔断器 FU5 用做电动机 M3 主电路的短路保护。由于电动机 M3 工作在手动操作的短时工作状态,故未设过载保护。

铣床基本知识

铣床可以用来加工平面、斜面和各种形式的沟槽等,装上分度头后可以铣切直齿齿轮和螺旋面,装上圆工作台还可以铣切凸轮和弧形槽,是一种常用的机床设备。铣床的种类很多,有立铣、卧铣、龙门铣、仿形铣及各种专用铣床。

卧式万能铣床的工作台为升降式工作台,故又称为升降台式铣床,用于 加工尺寸不太大的工件。

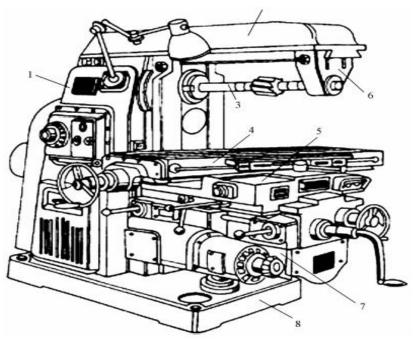


图 6-7 XA6132 型卧式结构万能铣床结构简图

1-床身; 2-悬梁; 3-铣刀轴; 4-工作台; 5-床鞍; 6-悬梁支架; 7-升降台; 8-底座



图6-9 XA6132型卧式万能铣床电气控制原理图

主轴电动机 M2 和冷却泵电动机 M1 的控制线路分析

采用切换开关 SA4 选择主轴电动机 M2 的转动方向,停止按钮 SB1、SB2 用于主轴电动机 M2 的两地停止控制,起动按钮 SB3、SB4 用于主轴电动机 M2 的两地起动控制,位置开关 SQ5 用于主轴电动机 M2 的变速冲动控制,旋钮开关 SA1 用于冷却泵电动机 M1 的起 / 停控制,旋钮开关 SA2 用于上刀制动。

主轴电动机的正转起动控制:切换开关 SA4 合向"正转",按动起动按钮 SB3 或 SB4,中间继电器 KA1 线圈通电自锁,接触器 KM1 线圈通电吸合,主轴电动机 M2 正转。

主轴电动机 M2 的制动控制: 按动停车按钮 SB1 或 SB2, 接触器 KM1 线圈断电, 打开自锁回路, 切断电动机 M1、M2、M3 的供电电源, 同时直流供电电路的电磁制动离合器 YB 线圈点动通电, 主轴电动机 M2 进行电磁制动停车, 快进电磁铁 YC2 线圈点动通电, 进给电动机 M3 迅速停转。 松开按钮 SB1 或 SB2, 电磁制动器 YB、YC2 线圈断电,制动过程结束。

页

主轴电动机 M2 的上刀制动: 进行上刀和换刀操作时, 转动旋钮开关 SA2, 其动断触点切断 KA、KM1、KM2 的线圈电路, 其动合触点使主轴电磁制动器线圈 YB 通电, 主轴电磁制动, 保证上刀和换刀的顺利进行。

主轴变速冲动: 拉出变速离合器手柄,变速手柄拉出的过程中瞬时压动位置开关 SQ5,其动断触点切断接触器 KM1 线圈电路,使主轴电动机 M2 断电,然后转动变速手轮选择转速,转速选定后将变速手柄复位,变速手柄复位的过程中又瞬时压动位置开关 SQ5,SQ5 的动断触点断开自锁回路、动合触点接通接触器 KM1 线圈电路,主轴电动机 M2 作瞬时冲动(点动),主轴电动机的瞬时冲动用以调整齿轮位置。齿轮进入正常啮合状态时,变速手柄可以推回原位,位置开关 SQ5 复位,接触器 KM1 线圈断电,主轴电动机 M2 停止,变速冲动过程结束。

工作台电动机 M3 的控制

根据工作台的顺序与互锁控制要求,工作台电动机用中间继电器 KA1 和 KA2 的动合触点作顺序控制,用旋钮开关 SA3 的动合触点选择圆形与矩形工作台的操作,进给控制电路如图 6-10 所示。矩形升降式工作台设有纵向和十字两个操作手柄,各个操作手柄在机械上分别接通各自的机械传动链,并通过挡铁压动位置开关接通相应控制电路,使工作台电动机 M3 正转或者反转,以带动工件实现左右、前后、上下的三维空间移动,两个操作手柄实现的动作之间互锁。

(1)矩形工作台纵向进给控制 矩形工作台的纵向操纵手柄有左、中、右三个位置,操纵手柄扳向左、右位置时,沟通电动机 M2 与矩形工作台的纵向传动链,并压下位置开关 SQ1 或 SQ2,接通接触器 KM2 或 KM3 的线圈电路,使工作台电动机 M3 正转或反转,矩形工作台向左或向右进给。

设纵向操作手柄在右侧位置时,沟通纵向机械传动链的同时压下位置开关 SQ1,使接触器 KM3 线圈通电,进给电动机 M3 正转,工作台向右移动

(2) 矩形工作台横向和升降运动控制 矩形工作台的横向和升降运动设有两套机械联动的十字操纵手柄,用以实现两地操纵,十字手柄有上下、前后及中间(零位)五个工作位置,十字手柄在前、后位置沟通横向机械传动链,在上、下位置沟通垂直机械传动链。手柄扳向下(升降)或右(横向)沟通各自机械传动链的同时,压下位置开关 SQ3,使 KM3 线圈通电,电动机 M3 正转,根据所沟通机械传动链的不同,工作台实现向下(垂直)或向前(横向)运动。手柄扳向上或左,压下位置开关 SQ4,使接触器 KM4 线圈通电,电动机 M3 反转,根据沟通机械传动链的不同,工作台实现向上(垂直)或向后(横向)运动。

(3)工作台快速移动

工作台在工进过程中,接触器 KM3 或 KM4 线圈通电,按下快速移动按钮 SB5 或 SB6,中间继电器 KA2 线圈通电,其动断触点使工进电磁离合器的电磁铁 YC1 线圈断电,其动合触点使快进电磁离合器的电磁铁 YC2 线圈通电,工作台沿工进方向快速进给。松开按钮 SB5 或 SB6,中间继电器 KA2 线圈断电,电磁离合器电磁铁 YC1 线圈通电、YC2 线圈断电,工作台恢复工进。

(4) 圆工作台回转运动

转动圆形和矩形工作台选择的旋钮开关 SA3,圆工作台控制等效电路如图 6-10 所示,控制电流经位置开关 SQ1~SQ4 的动断触点使接触器 KM3 线圈通电,电动机 M3 正转,圆形工作台回转。此时要求纵向和十字操作手柄均在中间零位,否则接触器 KM3 线圈不能通电,回转运动将停止,满足系统的互锁保护要求。

(5)工作台电动机 M3 的变速冲动 工作台的变速冲动原理与主轴变速冲动相同,变速时拉出蘑菇形变速手轮选择转速,然后将变速手轮复位,在变速手轮复位过程中瞬时压动位置开关 SQ6,其动断触点切断自锁回路,其动合触点接通 KM3 线圈电路,电动机 M3 瞬时通电冲动。变速手轮复位后,位置开关 SQ6 复位,一次变速冲动结束。与主轴变速冲动操作相同,一次不到位,需要立即拉出变速手轮,再次重复进行复位操作,直至齿轮啮合良好进入正常工作。

镗床

机加工中使用比较普遍的机床设备,分为卧式镗床和坐式镗床两种。主要用于加工精确的孔和各孔间相互位置要求较高的零件。

T68 卧式镗床主要由床身、前立柱、镗头架(用来安装镗杆和花盘)、工作台、后立柱和尾架等部分组成,如图 6-12 所示。机加工时,工件固定在工作台上,在镗杆或花盘上固定的刀具旋转的同时,刀具或工作台进给做切削加工。

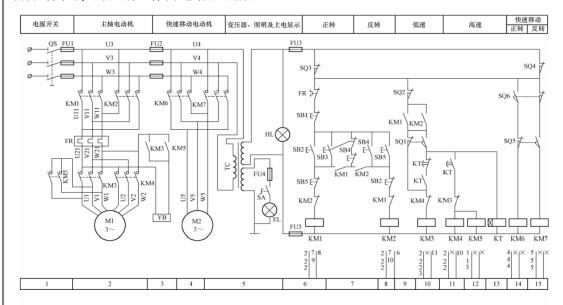


图6-13 T68卧式镗床电气控制原理图

控制电路分析

(1) 主轴电动机起动控制

主轴电动机控制电路如图 6-14 所示,主轴电动机的起动方法有正、反向的高、低速起动和正、反向点动控制。高速起动时,为减小起动电流,先低速起动,然后切换到高速起动和运行。电路中,控制按钮 SB3、SB2 为高、低速,正、反向起动按钮,SB4、SB5 为正、反向点动控制按钮。

控制电路分析

(2) 主轴电动机的停车制动

主轴电动机转动过程中,按动停止按钮 SB1,接触器 KM1 或 KM2 线圈断电、KM3 或 KM4 和 KM5 线圈断电,电磁铁 YB 线圈断电。主轴电动机 M1 抱闸制动,迅速停车。

(3) 主轴(刀具) 进给和工作台(工件) 进给的互锁

主轴进给手柄搬到进给位置压下限位开关 SQ3,工作台进给手柄搬到进给位置时压下限位开关 SQ4,若两个手柄均搬在进给位置,SQ3、SQ4的动断触点都断开,切断控制电路,故不会出现主轴和工作台同时进给情况,实现两者间的互锁要求。

(4) 主轴或进给变速控制

拉出主轴变速孔盘或进给变速手柄,限位开关 SQ2 受压断开,接触器 KM3 或 KM4、KM5 线圈断电,时间继电器 KT 断电,电磁铁 YB 线圈断电,主轴电动机 M1 抱闸制动、停转。选择好主轴转速后,推回变速孔盘,则 SQ2 复位闭合,接触器 KM3 线圈通电,主轴电动机 M1 自动低速起动,若齿轮未啮合好,变速孔盘推不上,只要拉出主轴变速孔盘或进给变速手柄,位置开关 SQ2 受压断开,主轴电动机 M1 停转,来回推拉,可以使主轴电动机 M1 产生变速冲动,直至变速孔盘或手柄推回原位,齿轮正确啮合为止。

(5) 快速移动控制

快速电动机 M2 拖动镗床各部件的快速移动, 快速手柄扳到正向或反向快速位置时, 压动限位

开关 SQ5 或 SQ6,接触器 KM6 或 KM7 线圈通电,电动机 M2 正向或反向转动,运动部件形成所选方向的快速移动。

起重机

是一种用来起吊和下放重物,并能使重物在一定范围内水平移动,以及在固定范围内装卸、搬运物料的起重机械。 它广泛应用于工矿企业、车站、港口、仓库、建筑工地等场所,是现代化生产中不可缺少的机械设备。

起重机的类型很多,有门式、塔式、桥式等类型,其中以桥式起重机应用最为普遍。 起重机按其起吊重量可划分为三级:小型为5~10t,中型为10~50t,50t以上为重型及特 重型。

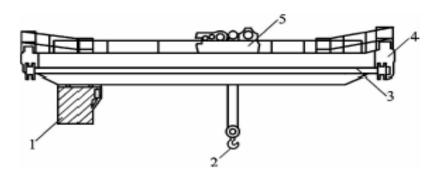


图 6-17 桥式起重机结构示意图

1-驾驶室; 2-主钩; 3-主梁; 4-端梁; 5-起重小车

▶ 提升机构对电力拖动的要求

- 1. 主钩能快速升降, 轻载提升速度应大于额定负载的提升速度。
- 2. 具有一定的调速范围, 普通起重机调速范围为 3:1, 也有要求为(5~10):1 的起重机。
- 3. 具有适当的低速区,一般在30%额定速度内分为几挡,以便选择。
- 4. 提升第一挡的作用是为了消除传动间隙,将钢丝绳张紧,称为预备级,这一挡的电动机起动转矩不能过大,以免产生过强的机械冲击,一般在额定转矩的一半以下。
- 5. 在负载下降时,根据负载的大小,提升电动机可以工作在电动、倒拉制动、回馈制动等工作状态下,以满足不同下降速度的要求。
- 6. 为了安全,起重机采用断电制动方式的机械抱闸制动,以避免因停电造成无制动力矩,导致重物自由下落引发事故,同时也还要具备电气制动方式,以匀速平稳下放重物。 除了上述要求以外,桥式起重机还应有完善的保护和联锁控制环节。

作业

1. 课后章节作业。

教学 反思 本章节是对典型生产机械电气控制系统图进行介绍分析,主要讲述了工作原理,故障现象及排除,通过 实训让学生掌握各生产机械电气故障的检查与排除。从整体课堂授课情况分析,大部分学生基本能掌握 相关知识点,教学效果良好。